• Home
  • Members
  • News
  • About
  • Contact us
  • IBN Cluster
Language
  • lang English
  • lang Nederlands
VRIVRI
  • Home
  • Members
  • News
  • About
  • Contact us
  • IBN Cluster

Imec presents successors to FinFET for 7nm and beyond at upcoming VLSI Technology Symposium 2015

18 June 2015 Press articles No Comments

At this week’s VLSI 2015 Symposium in Kyoto (Japan), imec reported new results on nanowire FETs and quantum-well FinFETs towards post-FinFET multi-gate device solutions.

As the major portion of the industry adopts FinFETs as the workhorse transistor for 16nm and 14nm, researchers worldwide are looking into the limits of FinFETs and potential device solutions for the 7nm node and beyond. Two approaches, namely Gate-All-Around Nanowire (GAA NW) FETs, which offer significantly better short-channel electrostatics, and quantum-well FinFETs (with SiGe, Ge, or III-V channels), which achieve high carrier mobility, are promising options.

For the first time, imec demonstrated the integration of these novel device architectures with state-of-the-art technology modules like Replacement-Metal-Gate High-k (RMG-HK) and Self (Spacer)-Aligned Double-Patterned (SADP) dense fin structures. By building upon today’s advanced FinFET technologies, the work shows how post-FinFET devices can emerge, highlighting both new opportunities as well as complexities to overcome.

Imec and its technology research partners demonstrated SiGe-channel devices with RMG-HK integration. Besides SiGe FinFET, a unique GAA SiGe nanowire channel formation during the gate replacement process has been demonstrated. The novel CMOS-compatible process converts fin channels to nanowires by sacrificial Si removal during the transistor gate formation. The process may even enable future heterogeneous co-integration of fins and nanowires, as well as Si and SiGe channels. The work also demonstrates that such devices and their unique processing can lead to a drastic 2x or more improvement in reliability (NBTI) with respect to Si FinFETs.

Moreover, imec demonstrated Si GAA-NW FETs based on SOI with RMG-HK. The work compares junction-based and junction-less approaches and the role of gate work function for multi-Vt implementations. New insights into the improved reliability (PBTI) with junction-less nanowire devices have been gained.

Extending the heterogeneous channel integration beyond Si and SiGe, imec demonstrated for the first time strained Ge QW FinFETs by a novel Si-fin replacement fin technique integrated with SADP process. Our results show that combining a disruptive approach like fin replacement with advanced modules like SADF-fin, RMG-HK, direct-contacts can enable superior QW FinFETs. The devices set the record for published strained Ge pMOS devices, outperforming by at least 40% in drive current at matched off-currents.

Imec’s research into advanced logic scaling is performed in cooperation with imec’s key partners in its core CMOS programs including GLOBALFOUNDRIES, INTEL, Micron, Panasonic, Samsung, SK hynix, Sony and TSMC.

Visit www2.imec.be to download the press release.

Tags: imec
No Comments
Share
0

You also might be interested in

Imec and sureCore collaborate on SRAM Design IP

Mar 28, 2015

sureCore Ltd., the low power SRAM IP company and nanoelectronics[...]

Imec and Holst Centre Showcase Advanced Smart Garments at ITF Brussels 2015

Jun 24, 2015

Today, imec and Holst Centre (set up by imec and TNO) are demonstrating the most advanced smart garment to date at the Imec Technology Forum (ITF) in Brussels. The smart t-shirt measures a highly accurate electrocardiogram (ECG), recognizes activity and calculates energy expenditure in an unobtrusive way. The smart t-shirt allows for maximum user comfort and natural movement.

Imec and Holst Centre Launch Comfortable EEG Headset for Consumer Applications

Aug 24, 2015

Today, imec, the world-leading nanoelectronics research center, Holst Centre (set up by imec and The Netherlands Organization for Applied Scientific Research, TNO), and the Industrial Design Engineering (IDE) faculty of Delft University of Technology (TU Delft), announced the introduction of a new wireless electroencephalogram (EEG) headset that can be worn comfortably and achieves a high-quality EEG signal. The headset enables effective brain-computer interfacing and can monitor emotions and mood in daily life situations using a smartphone application.

Leave a Reply Cancel Reply

Categories

  • News (30)
  • Press articles (52)
  • Uncategorized (1)

Recent newsletters

2021 - 1
2020 - 4
2020 - 3

> View all newsletters

Upcoming events

Sorry, there are no upcoming events at this moment.

Recent posts

  • Subscribe to our newsletter
  • Webinar ‘ReThinking NewSpace’: connecting up- to downstream with EO innovation
  • Seminar space economy & job fair (Dutch)

CONTACT

Flemish Space Industry
Berkenrodelei 33, 2660 Hoboken
btw BE 0455.534.170

Tel. +32 477 22 88 67
Fax +32 16 20 06 21
contact@vri.vlaanderen

Projects are supported by the FIT

READ MORE ABOUT

antwerpspace antwerp space ghent university imec newtec OIP Systems vito von Karman Institute xenics
Visit the Flanders Space website

STAY INFORMED

Like and follow us on LinkedIn.

SIGN UP FOR OUR NEWSLETTER

 
 
 
 

© 2023 VRI

Prev Next