• Home
  • Leden
  • Nieuws
  • Over VRI
  • Contact
  • IBN Cluster
Language
  • lang English
  • lang Nederlands
VRI VRI
  • Home
  • Leden
  • Nieuws
  • Over VRI
  • Contact
  • IBN Cluster

Imec and Lam Research Corporation Develop Novel Metallization Method

mei 19, 2015 | Persberichten | 0 comments |

During the IEEE IITC conference in Grenoble, the nanoelectronics research center imec and Lam Research Corporation today presented a novel bottom-up prefill technique for vias and contacts. The technique, based on Electroless Deposition (ELD) of Cobalt (Co) is a highly selective method resulting in void-free filling of via and contact holes. Potentially increasing the circuit performance, it is a promising path to scaling advanced interconnects and enabling future logic and DRAM nodes at the 7 nm node and below.

As logic and memory nodes scale, performance of these advanced interconnects is negatively impacted by increasing interconnect resistance. Furthermore, voids that occur in heavily scaled vias severely impact yield. Imec’s industrial affiliation program on advanced interconnects is exploring novel metallization methods to solve these issues. One way to solve the problem is to identify integration and metallization alternatives that provide resistance benefits over conventional technology without compromising reliability and yield. Together with Lam Research, a Co ELD technique was demonstrated as a feasible method for highly selective bottom-up contact fill and via prefill with Cobalt (Co) as an alternative metal to Copper (Cu). Moreover, the high selectivity of the ELD process, at lower cost compared to Chemical Vapor Deposition (CVD), intrinsically ensures a good metal-to-metal interface and paves the way to void-free via filling and increased yield. Trench fill yield and line resistance may also benefit from the de-coupling of line and via aspect ratios, permitting the design of each for optimum Resistance/Capacitance (RC). Therefore, Co prefill ELD has the potential to enable future scaling of advanced logic and memory technologies.

The results were achieved in cooperation with imec’s key partners as part of its core CMOS programs: GlobalFoundries, Intel, Samsung, SK hynix, Sony, TSMC, Amkor, Micron, Utac, Qualcomm, Altera, Fujitsu, Panasonic, and Xilinx.

Co ELD on Palladium

Caption: Co ELD on Palladium/Tungsten (Pd/W) for different timed stops to yield an (i) under fill, (ii) potential ideal stop or an (iii) overburden in 28nm holes (Aspect Ratio (AR) 4.5).

Tags: imec
0 Comments
0
Share

You also might be interested in

Imec and Tokyo Electron Demonstrate Electrical Advantages of Direct Cu Etch Scheme for Advanced Interconnects

mei 20, 2015

Today, at the IEEE IITC conference, nano-electronics research center imec and Tokyo Electron Limited (TEL) presented a direct Cu etch scheme for patterning Cu interconnects. The new scheme has great potential to overcome resistivity and reliability issues that occur while scaling conventional Cu damascene interconnects for advanced nodes.

Imec introduces self-assembled monomolecular organic films to seal ultra-porous low- k materials

jul 15, 2015

Nano-electronics research center imec announced today at SEMICON West that it has demonstrated concept and feasibility for pore-sealing low-k dielectrics in advanced interconnects. The method, based on the self-assembly of an organic monolayer, paves the way to scaling interconnects beyond N5.

Imec Pushes the Boundaries of Gallium Nitride (GaN) Technology

aug 12, 2015

World-leading nano-electronics research center imec announced today that it is extending its Gallium Nitride-on-Silicon (GaN-on-Si) R&D program, and is now offering joint research on GaN-on-Si 200mm epitaxy and enhancement mode device technology. The extended R&D initiative includes exploration of novel substrates to improve the quality of the epitaxial layers, new isolation modules to increase the level of integration, and the development of advanced vertical devices. Imec welcomes new partners interested in next generation GaN technologies and companies looking for low-volume manufacturing of GaN-on-Si devices to enable the next generation of more efficient and compact power converters.

Leave a Reply Cancel Reply

Categorieën

  • Nieuws (65)
  • Persberichten (72)

Recente nieuwsbrieven

2021 - 1
2020 - 4
2020 - 3

> Bekijk alle nieuwsbrieven

Volgende evenementen

Sorry, er zijn momenteel geen nieuwe evenementen.

Recente berichten

  • Webinar ‘ReThinking NewSpace’: up- en downstream verbinden met aardobservatie
  • Mechelse beeldsensoren zijn wereldtop in biotech, medische wereld, ruimtevaart en industrie
  • Seminarie ruimtevaartseconomie & jobbeurs

CONTACT

Vlaamse Ruimtevaartindustrie
Berkenrodelei 33, 2660 Hoboken
btw BE 0455.534.170

Tel. +32 477 22 88 67
Fax +32 16 20 06 21
contact@vri.vlaanderen

Projecten worden gesteund door het FIT

LEES MEER OVER

antwerpspace antwerp space ghent university imec innotek newtec OIP Systems vito von Karman Institute xenics

BLIJF OP DE HOOGTE

Vind ons leuk en volg ons op LinkedIn.

MELD JE AAN VOOR ONZE NIEUWSBRIEF

 
 
 
 

© 2022 VRI

Prev Next