• Home
  • Members
  • News
  • About
  • Contact us
  • IBN Cluster
Language
  • lang English
  • lang Nederlands
VRIVRI
  • Home
  • Members
  • News
  • About
  • Contact us
  • IBN Cluster

Imec and Ghent University Demonstrate First Laser Arrays Monolithically Grown on 300mm Silicon Wafers

29 October 2015 Press articles No Comments

Imec and Ghent University present, for the first time, arrays of indium phosphide lasers monolithically integrated on 300mm silicon substrates in a CMOS pilot line. This breakthrough achievement, published in Nature Photonics, provides a path toward high-volume manufacturing of cost-effective photonic integrated circuits (PICs) with monolithically integrated laser sources. Such laser-powered PICs will revolutionize data transfer between future logic and memory chips.

Over the past few years, demand for data communication between servers in cloud datacenters has been growing exponentially, following strong growth in social networking, cloud computing and big data applications. Silicon photonics technology enables cost-effective manufacturing of fiber-optic transceivers, which in turn provides continued scaling of server and datacenter capacity with improved power efficiencies. However, wide-spread adoption of this technology has been hampered in part by the lack of monolithically integrated laser sources. The integration on silicon of efficient indium phosphide based light sources, currently driving long-range telecommunication networks, is known to be very challenging, owing to the large mismatch in crystal lattice constants between both materials.

Imec and Ghent University overcame these structural differences and largely suppressed the detrimental crystal defects that typically form at the interface between silicon and indium phosphide. Utilizing a production grade metal-organic vapor-phase epitaxial (MOVPE) growth reactor, indium phosphide semiconductor was selectively grown on silicon in a pre-patterned oxide template , realizing indium phosphide waveguide arrays across the entire 300mm substrate. Subsequently, periodic grating structures were etched in the top layer of these waveguides, providing the optical feedback required for laser operation.
Lasing operation was demonstrated for all tested devices consisting of an array of ten indium phosphide lasers. Typical lasing threshold powers of around 20mW were observed at room temperature under optical pumping. Lasing performance showed small variability along the array, illustrating the high material quality of the heteroepitaxial grown indium phosphide. In addition, accurate control on the distribution of lasing wavelengths in the array was demonstrated by modifying the grating parameters.

The newly demonstrated approach for integrating lasers with silicon has been carried out in imec’s 300mm CMOS pilot line facility, therefore providing a path to large volume manufacturing. Ongoing research efforts focus on growing more complex layer stacks to enable electrical injection of the lasers and emission in the 1300nm wavelength range, along with integration with silicon based waveguide devices.

This work has been carried out as part of imec’s industry affiliation program on Optical I/O, which targets the development of a scalable, silicon-based optical interconnect technology for high-bandwidth chip-level I/O. The work was also partly supported by the European Commission through an ERC starting grant awarded to Prof. D. Van Thourhout of Ghent University for research on Ultra Low Power Photonic ICs (ULPPIC). This five year project aims to develop novel active photonic devices with lower power consumption, for integration on next generation electronic and photonic ICs.

Imec’s research and development work on Optical I/O is performed in cooperation with key partners in its core CMOS programs including Huawei, GlobalFoundries, Intel, Micron, Panasonic, Qualcomm, Samsung, SK Hynix, Sony and TSMC.

Visit www2.imec.be to download the press release.

Tags: imec
No Comments
Share
0

You also might be interested in

Imec and Kaneka expand their collaboration

Nov 9, 2015

World-leading nanoelectronics research center imec and Kaneka Corporation, a Japanese leading manufacturer of chemical specialties and solar cells, today announced that they have signed a new three year framework agreement that strengthens and extends their comprehensive R&D collaboration. Next to working on next generation solar cells, under this frame agreement imec and Kaneka will explore new applications in life science and thin-film electronics.

Besi and Imec Present High-Accuracy Narrow-Pitch Bonding of 3D ICs using Thermocompression

Jul 14, 2015

Today, at SEMICON WEST 2015 (San Francisco), world-leading nano-electronics research center imec and Besi, a global equipment supplier for the semiconductor and electronics industries announced that they have jointly developed an automated thermocompression solution for narrow-pitch die-to-wafer bonding, a method by which singulated dies are stacked onto bottom dies which are still part of a fully intact 300mm wafer. The solution features high accuracy and high throughput, paving the way to a manufacturable 2.5D, 3D, and 2.5D/3D hybrid technology.

Imec Demonstrates 50GHz Ge Waveguide Electro-Absorption Modulator

Mar 25, 2015

At this week’s OFC 2015, the largest global conference and exposition for optical communications, nanoelectronics research center imec, its associated lab at Ghent University (Intec), and Stanford University have demonstrated a compact germanium (Ge) waveguide electro-absorption modulator (EAM) with a modulation bandwidth beyond 50GHz.

Leave a Reply Cancel Reply

Categories

  • News (30)
  • Press articles (52)
  • Uncategorized (1)

Recent newsletters

2021 - 1
2020 - 4
2020 - 3

> View all newsletters

Upcoming events

Sorry, there are no upcoming events at this moment.

Recent posts

  • Subscribe to our newsletter
  • Webinar ‘ReThinking NewSpace’: connecting up- to downstream with EO innovation
  • Seminar space economy & job fair (Dutch)

CONTACT

Flemish Space Industry
Berkenrodelei 33, 2660 Hoboken
btw BE 0455.534.170

Tel. +32 477 22 88 67
Fax +32 16 20 06 21
contact@vri.vlaanderen

Projects are supported by the FIT

READ MORE ABOUT

antwerpspace antwerp space ghent university imec newtec OIP Systems vito von Karman Institute xenics
Visit the Flanders Space website

STAY INFORMED

Like and follow us on LinkedIn.

SIGN UP FOR OUR NEWSLETTER

 
 
 
 

© 2025 VRI

Prev Next