• Home
  • Leden
  • Nieuws
  • Over VRI
  • Contact
  • IBN Cluster
Language
  • lang English
  • lang Nederlands
VRIVRI
  • Home
  • Leden
  • Nieuws
  • Over VRI
  • Contact
  • IBN Cluster

Imec introduces self-assembled monomolecular organic films to seal ultra-porous low- k materials

15 juli 2015 Persberichten No Comments

Nano-electronics research center imec announced today at SEMICON West that it has demonstrated concept and feasibility for pore-sealing low-k dielectrics in advanced interconnects. The method, based on the self-assembly of an organic monolayer, paves the way to scaling interconnects beyond N5.

The need for ultra-porous low-k materials as interconnect dielectrics to meet the requirements dictated by the ITRS (International Technology Roadmap for Semiconductors) poses several challenges for successful IC integration. One of the most critical issues is the indiffusion of moisture, ALD/CVD metal barrier precursors and Cu atoms into the porous low-k materials during processing (low-k pore diameter larger than 3nm, up to 40% porosity). This leads to a dramatic increase of the material dielectric constant and leakage current, and to the reduction of the voltage for dielectric breakdown.

Imec has developed a method to seal the pores of the low-k material with a monomolecular organic film. The method not only prevents diffusion of moisture and metal precursors into the low-k material, it also might provide an effective barrier to confine copper within the copper wires and prevent copper diffusion into the low-k material.

Self-assembled monolayers (SAMs) derived from silane precursors, are deposited from vapor phase on 300mm wafers into low-k during chemical vapor or atomic layer deposition and subsequent Cu metallization. The dielectric constant (k) of the resulting sealing layer is 3.5 and a thickness lower than 1.5nm was achieved. This is key to limit the RC delay increase enabling beyond 5nm technology nodes. As a result, a ca. 30% capacitance reduction was observed after SAM pore-sealing was applied. Moreover, a clear positive impact on the low-k breakdown voltage is observed upon sealing.

Figure 1. RC plot and HAADF-STEM images illustrating the effectiveness of SAM sealing in preventing metal indiffusion into the ultra-porous low-k film integrated in a 45nm half pitch dual damascene test vehicle. This translates in a 30% decrease in the measured capacitance.

Imec’s research into advanced interconnects includes key partners as GLOBALFOUNDRIES, INTEL, Micron, Panasonic, Samsung, SK Hynix, Sony, and TSMC.

Visit www2.imec.be to download the press release.

Tags: imec
No Comments
Share
0

You also might be interested in

Imec and Tokyo Electron Demonstrate Electrical Advantages of Direct Cu Etch Scheme for Advanced Interconnects

mei 20, 2015

Today, at the IEEE IITC conference, nano-electronics research center imec and Tokyo Electron Limited (TEL) presented a direct Cu etch scheme for patterning Cu interconnects. The new scheme has great potential to overcome resistivity and reliability issues that occur while scaling conventional Cu damascene interconnects for advanced nodes.

Imec and Ghent University Demonstrate First Laser Arrays Monolithically Grown on 300mm Silicon Wafers

okt 29, 2015

Imec and Ghent University present, for the first time, arrays of indium phosphide lasers monolithically integrated on 300mm silicon substrates in a CMOS pilot line. This breakthrough achievement, published in Nature Photonics, provides a path toward high-volume manufacturing of cost-effective photonic integrated circuits (PICs) with monolithically integrated laser sources. Such laser-powered PICs will revolutionize data transfer between future logic and memory chips.

Imec and Kaneka expand their collaboration

nov 9, 2015

World-leading nanoelectronics research center imec and Kaneka Corporation, a Japanese leading manufacturer of chemical specialties and solar cells, today announced that they have signed a new three year framework agreement that strengthens and extends their comprehensive R&D collaboration. Next to working on next generation solar cells, under this frame agreement imec and Kaneka will explore new applications in life science and thin-film electronics.

Leave a Reply Cancel Reply

Categorieën

  • Nieuws (65)
  • Persberichten (72)
  • Uncategorized (1)

Recente nieuwsbrieven

2021 - 1
2020 - 4
2020 - 3

> Bekijk alle nieuwsbrieven

Volgende evenementen

Sorry, er zijn momenteel geen nieuwe evenementen.

Recente berichten

  • Ontvang onze nieuwsbrief
  • Webinar ‘ReThinking NewSpace’: up- en downstream verbinden met aardobservatie
  • Mechelse beeldsensoren zijn wereldtop in biotech, medische wereld, ruimtevaart en industrie

CONTACT

Vlaamse Ruimtevaartindustrie
Berkenrodelei 33, 2660 Hoboken
btw BE 0455.534.170

Tel. +32 477 22 88 67
Fax +32 16 20 06 21
contact@vri.vlaanderen

Projecten worden gesteund door het FIT

LEES MEER OVER

antwerpspace antwerp space ghent university imec innotek newtec OIP Systems vito von Karman Institute xenics
Visit the Flanders Space website

BLIJF OP DE HOOGTE

Vind ons leuk en volg ons op LinkedIn.

MELD JE AAN VOOR ONZE NIEUWSBRIEF

 
 
 
 

© 2023 VRI

Prev Next